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Abstract 10 

The Bunyaviridae constitute a large family of animal RNA viruses distributed worldwide, 11 

most members of which are transmitted to vertebrate hosts by arthropods and can cause 12 

severe pathologies in humans and livestock. With an increasing number of outbreaks, 13 

arthropod-borne bunyaviruses (arbo-bunyaviruses) represent a global threat to public 14 

health and agricultural productivity. Yet transmission, tropism, receptors, and cell entry 15 

remain poorly characterized. The focus of this review is on the initial infection of 16 

mammalian hosts by arbo-bunyaviruses from cellular and molecular perspectives, with 17 

particular attention to the human host. We address current knowledge and advances 18 

regarding the identity of the first-target cells and the subsequent processes of entry and 19 

penetration into the cytosol. Aspects of the vector-to-host switch that influence the early 20 

steps of cell infection in mammalian skin, where incoming particles are introduced by 21 

infected arthropods, are also highlighted and discussed. 22 

Keywords 23 
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Introduction 25 

The Bunyaviridae is one of the largest families of RNA viruses, with over 350 identified 26 

isolates assigned to five genera (Hantavirus, Nairovirus, Orthobunyavirus, Phlebovirus, 27 

and Tospovirus) (Figure 1) [1,2]. The Bunyaviridae is a unique group of viruses whose 28 

members have a global distribution and infect a wide range of hosts, including plants, 29 

invertebrates, and vertebrates. With the exception of hantaviruses, which are mainly 30 

transmitted through inhalation of aerosols from urine, feces, and saliva of infected rodents, 31 

the Bunyaviridae members are all arthropod-borne viruses (arboviruses) (Figure 1) [1,3-32 

7]. While tospoviruses are plant-specific and spread via non-hematophagous vectors, 33 

namely thrips, orthobunyaviruses, nairoviruses, and phleboviruses are transmitted to 34 

vertebrates by blood-feeding arthropods [1,2]. Several arthropod-borne bunyaviruses 35 

(arbo-bunyaviruses) represent a threat to livestock, agricultural productivity, and human 36 

public health, causing a broad spectrum of illness, ranging from mild syndrome to serious 37 

life-threatening disease and death. Because of their mode of transmission, these viruses are 38 

considered potential emerging agents of disease. Some are classified as potential biological 39 

weapons and listed as category A, high-priority pathogens, by the National Institute of 40 

Allergy and Infectious Diseases (NIAID) of the United States. 41 

In this review, we first illustrate the significance and diversity of the arbo-bunyaviruses 42 

using the best documented species infecting humans and domestic animals as examples 43 

(thus excluding de facto hanta- and tospoviruses from the review). We then highlight and 44 

discuss different aspects of the vector-to-host switch that most likely influence the identity 45 

and infection of the first-target cells in the skin dermis, where incoming particles are 46 

introduced through arthropod bites. We finish with an extensive review of current 47 

knowledge and advances addressing the subsequent cellular and molecular processes that 48 

drive virus penetration into cells, the ultimate steps of the initial infectious entry. 49 

A global threat to human and veterinary public health 50 

A limited number of arbo-bunyaviruses has been investigated, most of the available 51 

information coming from studies of a sprinkling of isolates, predominantly those 52 

introduced in the following paragraphs. However, it is apparent that there is a wide variety 53 

of isolates, vectors, hosts, diseases, and geographical distributions. This diversity is also 54 
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manifested at the cellular and molecular levels in the genomic organization, virion structure 55 

and architecture, transmission, tropism, cellular receptors, and cell entry, which are all 56 

discussed in the following chapters. It is obvious that there will be exceptions to some of 57 

the generalizations below. 58 

The Orthobunyavirus genus contains over 170 viruses divided into 18 serogroups. Most 59 

are transmitted by mosquitoes and midges, and a few by ticks and bed bugs [5]. More than 60 

30 isolates in the genus are responsible for several diseases in humans, from acute but self-61 

limiting febrile illnesses, e.g. Oropouche virus (OROV) in South America, to neurologic 62 

diseases, e.g. La Crosse virus (LACV) in North America [5]. In domestic animals, abortion, 63 

offspring with congenital malformations, or stillbirth are observed following infection by 64 

some orthobunyaviruses such as Schmallenberg virus (SBV), recently identified in the 65 

north of Europe and now present all over the continent [8]. 66 

The Nairovirus genus comprises seven serogroups, which together represent more than 30 67 

viruses, all transmitted by ticks [7,9]. Ticks are classified in Arachnida, a class distinct 68 

from that of insects (Insecta). These arthropods are of huge economic significance 69 

worldwide, both as harmful parasites and as vectors of several emerging agents of diseases 70 

[10-13]. This includes not only viruses, but also parasites and bacteria, causing for instance 71 

Lyme disease. Nairobi sheep disease and Crimean Congo hemorrhagic fever viruses 72 

(CCHFV) are arguably the most important nairoviruses from a public and veterinary public 73 

threat perspective. Nairobi sheep disease virus induces acute hemorrhagic gastroenteritis 74 

in sheep and goats in Central and East Africa. CCHFV is the most geographically 75 

widespread tick-borne virus that causes outbreaks of severe hemorrhagic disease in 76 

humans, with mortality approaching 30% [7]. Cases in humans have been reported in 77 

Africa, the Middle East, Asia, and Eastern Europe. Recently the virus has been detected in 78 

ticks collected in Spain [10,14,15]. 79 

The Phlebovirus genus comprises 70 viruses [16]. Although many phleboviruses are 80 

transmitted by sandflies, some are vectored by other arthropods. This is the case of Rift 81 

valley fever (RVFV) and Uukuniemi (UUKV) viruses, respectively transmitted by 82 

mosquitoes and ticks [16,17]. RVFV is an emerging pathogen affecting livestock and 83 

humans [18-20]. Infected domestic animals develop hepatitis, hemorrhage, and abortion 84 

with often fatal outcomes. In humans, the virus is responsible for an extensive variety of 85 
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symptoms ranging from febrile illness to severe disease, including among others hepatitis, 86 

retinitis, encephalitis, and hemorrhagic fever [21]. In recent outbreaks, the mortality rate 87 

in humans went up to 45%, though this may reflect exclusion of less severe cases from 88 

calculations rather than a change in virulence [20,22]. Whilst RVFV has spread from Africa 89 

to the Arabian Peninsula in the past decade, it now presents a risk of introduction into 90 

Southern Europe [18-20]. 91 

UUKV and related viruses are all transmitted by ticks. Uukuniemi-like viruses were 92 

initially grouped in a separate genus (Uukuvirus). After 1991, they were incorporated into 93 

the Phlebovirus genus because of molecular similarities with the other phleboviruses. 94 

Indeed UUKV has served for many decades as a major model for phleboviruses. Its 95 

investigation has led to major insights into many aspects of the phlebovirus life cycle, e.g. 96 

virion structure and morphogenesis, cell entry, and viral replication [23-32]. Recently, a 97 

number of novel tick-borne phleboviruses, all closely related to UUKV, have emerged in 98 

distinct parts of the world, some of which are highly pathogenic in humans [33-41]. Recent 99 

illustrations are Heartland virus (HRTV) in North America and severe fever with 100 

thrombocytopenia virus (SFTSV) in Asia, latter causing a fatality rate of up to 60% in some 101 

outbreaks [33-37,40]. In this context, there is a renewed interest in using UUKV to study 102 

these emerging viruses [42]. UUKV can be efficiently amplified in tick Ixodes ricinus cell 103 

lines (personal communication), it is not associated with any disease in humans and other 104 

animals, and therefore, allows for state-of-the-art elegant approaches, such as live cell and 105 

animal imaging, which are nearly impossible with the emerging, pathogenic tick-borne 106 

phleboviruses. 107 

Virus transmission 108 

Arbo-bunyaviruses infecting humans and other animals are generally maintained in 109 

arthropod vectors and amplified in non-human vertebrates, although a few reports suggest 110 

that humans may serve as amplifying reservoirs during urban epidemics [1,9,43-46]. 111 

Horizontal human-to-human transmission has rarely been reported and only occurs under 112 

specific circumstances, e.g. exposure of healthcare personnel to CCHFV-infected patients 113 

[46]. Confirmed cases of vertical transmission in humans are also rare. In general, humans 114 

are ‘dead-end’ hosts [43]. Livestock-to-human transmission can happen during outbreaks 115 

such as those of RVFV. RVFV can be transmitted to humans through contact with the 116 
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blood or organs of infected animals, e.g. slaughtering, butchering, or veterinary procedures, 117 

etc. The transmission of RVFV via aerosol has also led to infection in laboratory workers. 118 

However, natural transmission of arbo-bunyaviruses to vertebrates mostly occurs through 119 

the bite of infected arthropods [1,9,47]. 120 

With few exceptions, viruses are spread within arthropod populations both venereally and 121 

transovarially. In contrast to vertebrate hosts, there is no clear evidence of pathology or 122 

lethal outcomes following infection in arthropod hosts. Infection of arthropods is usually 123 

asymptomatic, predominantly persistent, and necessary for efficient propagation to other 124 

hosts. A few reports suggest a possible alteration in the general behavior of infected 125 

arthropods. Some reports show that insects can present significant modifications in their 126 

way to fly and feed following infection by dengue virus (DV), an important human 127 

pathogenic arbovirus of the Flaviviridae family [48,49]. Regarding bunyaviruses, infection 128 

of Aedes mosquitoes by LACV seems to cause a higher biting activity and also a longer 129 

probing time [50,51]. Authors propose that these changes in the behavior of mosquitoes 130 

may result in an enhancement of horizontal transmission of LACV. The molecular and 131 

cellular determinants of such behaviors in infected arthropod populations as well as the 132 

impact on the virus transmission and spread remain largely uncharacterized. The 133 

phosphorylation of the flavivirus NS5 protein by the mosquito protein kinase G has been 134 

recently correlated with the alteration of the flight behavior in Aedes aegypti and Anopheles 135 

gambiae [52]. 136 

Because of human activity and the changes in global climate, several of the bunyavirus 137 

arthropod vectors are spreading to new geographical locations, notably in more northerly 138 

regions of Europe and North America [19,43,53]. It is known that once the arthropod 139 

vectors are established in a new area, the viruses that they carry will shortly follow. 140 

Moreover intensive deforestation, overpopulation, and introduction of susceptible military 141 

personnel or settlers into new environments and wild territories are also factors favoring 142 

new contact with arthropods, and therefore the emergence, reemergence, and rapid spread 143 

of arboviral diseases. Consequently, the exposure of non-immune populations to 144 

pathogenic arbo-bunyaviruses as well as new outbreak episodes seem inevitable. Though 145 

our knowledge of the complex interactions between arthropods and these viruses has 146 

substantially increased during the last decade, our current view of the transmission to 147 
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mammals remains essentially based on studies performed in vitro or involving virus stocks 148 

produced in mammalian cells. Clearly much further work involving arthropod-derived 149 

bunyaviruses is needed to improve our global understanding of the bunyavirus life cycle 150 

and transmission to humans and other vertebrates. 151 

Genome organization and viral proteins 152 

Like all the other Bunyaviridae members, arbo-bunyaviruses are enveloped with a tri-153 

segmented single-stranded RNA genome that encodes a minimum of four structural 154 

proteins in a negative-sense orientation [1]. The largest genomic RNA segment (L) codes 155 

for a RNA-dependent RNA polymerase (protein L) that is essential for initiating the viral 156 

replication, the smallest segment (S) for a nucleoprotein (protein N), and the medium 157 

segment (M) for a precursor polypeptide that is further processed into two envelope 158 

glycoproteins (GN and GC) (Figure 2A). A third structural glycoprotein is sometimes 159 

encoded by the M segment of nairoviruses, such as Hazara and Clo Mor viruses [7,54,55]. 160 

Arbo-bunyaviruses also encode some non-structural proteins. Those for which the most 161 

data is available are briefly described in the following paragraphs (reviewed in [56]). 162 

The number of non-structural proteins varies from a genus to another, and sometimes 163 

among isolates within a genus. The NSm and NSs proteins are by far the most documented. 164 

When expressed, NSm results from the maturation cleavage of the M precursor 165 

polypeptide, usually in the order GN-NSm-GC or NSm-GN-GC (Figure 2A) [5-7]. Most 166 

orthobunyaviruses encode an NSm protein [5]. Phleboviruses transmitted by dipterans 167 

(sandflies and mosquitoes) also encode an NSm, but not the tick-borne phleboviruses 168 

(Uukuniemi-like viruses) [6]. With the vector of transmission, the presence of an NSm 169 

protein appears as one of the main distinctions between tick- and dipteran-borne 170 

phleboviruses [6]. In the Nairovirus genus, an NSm seems to be expressed in cells infected 171 

by CCHFV [57,58]. Not much is known about other nairoviruses and possible NSm 172 

proteins [7]. An additional non-structural protein, named NSs, is found in cells infected by 173 

phleboviruses and most orthobunyaviruses [5,6]. However some orthobunyaviruses 174 

present a truncated form of NSs or do not even encode an NSs protein [5]. Although the S 175 

segment of both phlebo- and orthobunyaviruses contains the NSs open reading frame 176 

(ORF), the expression of NSs involves divergent coding strategies. The NSs ORF of 177 

phleboviruses is non-overlapping and in a positive-sense orientation in the genomic viral 178 
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RNA, while that of orthobunyaviruses is internal to the N coding sequence and in a 179 

negative-sense orientation in the genomic S segment (Figure 2A) [5,6]. In the case of 180 

nairoviruses, the NSs ORF is simply absent [7]. Further non-structural highly O-181 

glycosylated proteins have been shown to be released from cells infected by CCHFV 182 

following maturation cleavages of the N terminal part of the M precursor polypeptide, also 183 

designated as the mucin-like domain (Figure 2A) [59]. These viral factors, the role and 184 

significance of which remain unclear, seem to be a specificity of CCHFV, and most likely, 185 

of other nairoviruses. 186 

The NSs protein of RVFV has been extensively studied, but a substantial amount of work 187 

has also been done regarding that of orthobunyaviruses and other phleboviruses [56,60]. 188 

While they seem dispensable for the production of viral progenies, the NSs proteins are 189 

considered as an important factor of virulence. An accumulation of evidence indicates that 190 

NSs contributes to the disease outcome by modulating host cell functions and antiviral 191 

responses [56,60]. These proteins have the ability to counteract the host innate immune 192 

defense. They interfere with the type I interferon induction, block the function of the 193 

protein kinase R (PKR), and inhibit the general transcription of host cells [56]. Mice 194 

inoculated with RVFV strains lacking the NSs sequence survive infection, in stark contrast 195 

to those exposed to the wild type virus, which typically die within a couple of days [61]. 196 

The NSm proteins have been studied to a lesser extent. Little is known about the function 197 

of these proteins. The few existing studies suggest a role in the assembly of 198 

orthobunyavirus particles [62,63]. The NSm of RVFV seems to play a key role in anti-199 

apoptotic processes, and therefore, is proposed to be the second virulence factor of the virus 200 

[64,65]. While the NSm of RVFV is important for virus replication and dissemination from 201 

the midgut of Aedes aegypti mosquitoes, NSs is rapidly silenced in RNA interference-202 

competent mosquito cell culture [66,67]. The NSs protein of Bunyamwera virus (BUNV), 203 

the prototype member of the Orthobunyavirus genus, is not able to shut off the transcription 204 

of infected insect cells as is the case in mammalian cells by blocking the activity of the 205 

RNA polymerase II [68]. The function of NSs and NSm in mammalian cells thus appears 206 

fundamentally distinct from that in arthropod cells.  207 
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Virion structure 208 

All bunyaviruses exclusively replicate in the cytosol and bud from the Golgi apparatus 209 

where virions acquire their lipid bilayer membrane and where maturation occurs. In the 210 

viral particles, the protein N is associated with the virus RNA genome, and together with 211 

the viral polymerase L, constitutes the pseudo-helical ribonucleoproteins (RNPs) [2]. A 212 

major distinction of bunyaviruses from other enveloped viruses is that the virions are 213 

devoid of any classical matrix or capsid. The protein N thus has an important role in the 214 

protection of the viral genetic information. In the last five years, the crystal structure of N 215 

has been solved for many bunyavirus members, providing new insights into the mechanism 216 

of RNP assembly [69-80] (reviewed in [81]). Briefly, the protein N of orthobunyaviruses 217 

binds to RNA in a positively charged cleft, formed by two-helical lobes [69-73,75]. In these 218 

cases, both the N- and C-terminal arms of N mediate the oligomerization of the viral 219 

nucleoprotein. Recently the structures of the N proteins of RVFV, SFTSV, and Toscana 220 

virus (TOSV) have also provided a new understanding of the assembly of phlebovirus RNP 221 

[74,76,77,82,83]. The general features of oligomerization and RNA binding in the N 222 

proteins are conserved among phleboviruses. The protein N comprises a C-terminal core 223 

domain, which binds to RNA, and an N-terminal single arm responsible for the 224 

oligomerization of the protein. Interestingly, the CCHFV N is closest to the nucleoprotein 225 

of Lassa virus, a member of the Arenaviridae family, and not that of a bunyavirus [78,79]. 226 

In the absence of additional information about the N proteins of other nairoviruses, it is 227 

difficult to say whether it is a specificity of CCHFV or of the nucleoproteins of all members 228 

in the genus. 229 

Electron microscopy (EM) pictures of bunyaviruses show particles roughly spherical and 230 

heterogeneous in size, with an average diameter of 80-140 nm and spike-like projections 231 

between 5 and 10 nm (Figure 2B and 2C) [1,2,23]. These protrusions are composed of the 232 

two glycoproteins, GN and GC, responsible for virus attachment to target cells and for 233 

penetration by membrane fusion. Recent ultrastructural studies confirmed the high degree 234 

of pleomorphism previously observed for bunyaviruses [23,84-87]. Cryoelectron 235 

tomography analyses of the phleboviruses RVFV and UUKV have disclosed that the most 236 

regular particles harbor surface glycoprotein protrusions arranged on an icosahedral lattice, 237 

with an atypical T = 12 triangulation [23,84-86]. Contrasting with these previous 238 
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observations, tomography data obtained for the orthobunyavirus BUNV revealed non-239 

icosahedral particles with glycoprotein spikes exhibiting a unique tripod-like arrangement 240 

[87]. 241 

Besides the several cryoelectron tomography studies recently reported for bunyavirus 242 

particles, the molecular structure of the glycoproteins remains largely unknown for these 243 

viruses. With the exception of a partial crystal structure obtained for the cytoplasmic tail 244 

of the CCHFV glycoprotein GN, the only X-ray structure available is for the complete 245 

ectodomain of the RVFV glycoprotein GC, solved at a resolution of 1.9 Å [88,89]. The 246 

overall fold of the protein shows a strong resemblance to the class II membrane fusion E 247 

proteins of flaviviruses such as DV and West Nile virus (WNV) [90,91]. This novel finding 248 

is in agreement with previous bioinformatics predictions and of major importance [92,93]. 249 

It provides for the first time direct evidence that the glycoprotein GC of a bunyavirus 250 

member belongs to the group of class II membrane fusion proteins. Although the degree of 251 

amino acid homology is rarely superior to 30% among the glycoproteins of bunyaviruses, 252 

one can reasonably postulate that the peptide responsible for bunyavirus membrane fusion 253 

is present in the glycoprotein GC. Mutation-based functional investigations into the 254 

glycoproteins of orthobunyaviruses, involving mainly cell-cell fusion assays and virus-like 255 

particles, support this view [94-98]. However, there are still outstanding questions 256 

concerning the global, highly-ordered arrangement and interactions of the glycoproteins 257 

GN and GC at the surface of virus particles [99]. To this extent, the X-ray structure of GN is 258 

unfortunately lacking. 259 

In the last decade, reverse genetics systems were developed to rescue BUNV and LACV 260 

from plasmids, enabling the modification of viral genomes and the studies of bunyavirus 261 

gene function [100-102]. These systems were recently adapted to other bunyavirus 262 

members, including RVFV, UUKV, SFTSV, and SBV [42,103-105]. Reverse genetics has 263 

revolutionized negative-sense RNA virology. The discovery potential has not yet been 264 

entirely tapped into in the bunyavirus field, especially in the domain of transmission and 265 

early virus-host cell interactions. This system indeed offers many opportunities to label the 266 

structural proteins of the virions so as to track single particles by microscopy, and to 267 

generate mutants of GN and GC so as to study the virus fusion mechanisms in living cells. 268 
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Arthropod vector-to-mammalian host switch 269 

The typical picture, which is largely employed to illustrate the life cycle of a virus, is often 270 

restricted to the productive infection of a single cell. This limited representation is 271 

particularly misleading in the case of arbo-bunyaviruses. This image tends to minimize the 272 

importance of the arthropod vector-vertebrate host alternation in the complete virus life 273 

cycle. The intrinsic cell biology of the arthropods differs from that of vertebrates in many 274 

aspects, such as growing temperature, lipid membrane, and glycan motifs. The host-switch, 275 

therefore, results in important changes in the molecular composition of the viral particles 276 

that are transmitted between the different host species. Indeed, the complete life cycle of 277 

an arbovirus consists of two essential components that are intricately interdependent, 1- the 278 

transmission cycle between, and within, non-vertebrate and vertebrate host populations, 279 

and 2- the productive cycle in the host cells (Figure 3). The host alternation appears to be 280 

critical for the genetic stability of RVFV and the infectivity of the virus [106]. Similar 281 

observations have been made for other arboviruses [107,108]. In the following paragraphs, 282 

some examples are given and discussed to illustrate the importance of taking into account 283 

and recapitulating the arthropod-to-mammal switch in investigations into the initial 284 

infection of mammalian host cells by arbo-bunyaviruses. 285 

The viral particles transmitted by arthropods to humans and other mammals are clothed 286 

with a glycan coat gained in tick or insect vectors. The N-glycans of viral glycoproteins 287 

derived from ticks remains nearly uncharacterized, whereas those produced in insect cells 288 

are notoriously known to be essentially composed of mannose residues [109]. When 289 

produced in mammalian cells, arboviruses are believed to lose their high-mannose coat to 290 

gain a complex glycosylation, meaning that the N-glycans on viral particles consist of 291 

diverse carbohydrate residues and not only mannoses [110-112]. Indeed, the mannose 292 

residues that are added onto the nascent glycoproteins of mammalian cells in the 293 

endoplasmic reticulum (ER) undergo several modifications by glycosidases and 294 

glycosylases through the Golgi apparatus [113]. N-glycosylations have several functions 295 

in the virus life cycle. Among others they are involved in the correct folding of viral 296 

glycoproteins through the quality control machinery, in hiding virus epitopes to escape the 297 

host humoral immune system response, and also in mediating virus interactions with cell 298 

surface lectin receptors. Many bunyaviruses use the human C type lectin DC-SIGN to enter 299 
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and infect dermal-like dendritic cells (DCs) (see the chapters ‘First-target cells’ and ‘Early 300 

virus-host cell interactions: receptors for bunyaviruses’) [25,114]. Not much more is 301 

known about the N-glycosylations of bunyaviral particles and the relation with the first-302 

target cells following transmission. 303 

The evidence gives N-glycosylations a critical role in the assembly, infectivity, and 304 

propagation of the unrelated arboviruses DV and WNV within both arthropod vectors and 305 

mammalian hosts, which is likely also true for the arbo-bunyaviruses [115-117]. A recent 306 

study has established the importance of host alternation in lectin switching during DV 307 

infection [111]. Only incoming insect-derived DV particles, which have a high-mannose 308 

coat, can infect human DCs via specific lectin-mannose interactions, while progeny viruses 309 

with a complex N-glycosylation are no longer able to infect DCs [111,112,118]. In line 310 

with these observations, RVFV presents a higher potency to infect goat DCs when derived 311 

from insect cells rather than mammalian cells [119]. Interestingly, some bunyaviruses have 312 

been shown to keep a highly mannosylated coat, even during production in mammalian 313 

cells [24,25,59]. This raises several questions: how can bunyaviral particles remain with 314 

this type of glycosylation when they egress through specialized compartments such as the 315 

ER and Golgi apparatus? How does the nature of N-glycans impact the virus spread 316 

throughout mammalian hosts in the further rounds of amplification after initial infection? 317 

Another important constituent of the bunyaviral particles is the lipid bilayer envelope. 318 

Similarly to the carbohydrates, lipids are acquired from the host cells during virus 319 

assembly, with substantial differences between insect and vertebrate cells in terms of fatty 320 

acid transport, metabolism, and lipid composition [120,121]. For instance, the plasma 321 

membrane of Sf9 insect cells contains 20 times less cholesterol than those isolated from 322 

mammalian cells [122,123]. Again, little information is available regarding the lipid 323 

composition of the arbo-bunyavirus membranes, the identity of lipids that are important 324 

for the virus fusion, if any, and the importance of host alternation in these processes. The 325 

virion structure and infectivity might effectively diverge according to the cell origin of 326 

viruses. Mammal-derived bunyaviral particles are mainly pleomorphic [23,84,85,87]. That 327 

bunyaviruses do not have any classical capsid or matrix proteins forming rigid structures 328 

underneath the viral envelope likely explains the relative fragility of virions observed in 329 

EM pictures. It is tempting to postulate that the arthropod cell-derived lipids contribute a 330 
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stronger protection of the RNPs to the particle envelope, and indirectly, a higher infectivity 331 

to the virions compared to those originating from mammalian cells. Infectivity also 332 

strongly depends on the capacity of the particles to fuse with cell membranes. In this sense, 333 

the lipid composition of target membranes has a major impact. UUKV has been shown to 334 

critically rely on late endosomal lipids for fusion and penetration (Bitto et al., personal 335 

communication, European Society for Virology 2013, Lyon, France). 336 

Additional differences exist between arthropod- and mammal-derived arbo-bunyaviral 337 

particles. In addition to sugars and lipids, the body temperature of the vertebrate and 338 

invertebrate hosts infected by arbo-bunyaviruses is also a major distinction. Arthropods are 339 

poikilothermic, meaning that their body temperature depends on that of the environment. 340 

Thereby one can imagine that virus variants have proteins correctly folded and functional 341 

in the typical range of temperature associated with these hosts (28-32 °C), but not at a 342 

higher temperature, such as that in mammalian bodies (37 °C). Temperature-sensitive virus 343 

mutants obtained in laboratory have been reported for UUKV and RVFV [124,125]. While 344 

remaining important for the infection of the first target-cells, these mutants might be unable 345 

to propagate throughout mammalian hosts. The selection of specific viruses and the 346 

importance of host alternation in the stability of arbovirus genomes may, in part, find an 347 

explanation in such a bottleneck [106-108]. In the case of RVFV, a third structural 348 

glycoprotein of 78 kDa is found on virions matured in mosquito C6/36 cells, but not on 349 

those derived from mammalian cells [126-128]. The expression of this protein, also 350 

referred to as P78/NSm-GN, actually results from the translation of an alternative ORF 351 

overlapping both sequences of NSm and GN in the M segment [126,127]. While its function 352 

remains unclear, P78/NSm-GN appears critical for virus production in insect cells and 353 

dispensable in mammalian cells [129]. This makes P78/NSm-GN a distinct determinant of 354 

virus propagation in insect vectors and mammalian hosts. This discussion points out the 355 

work that remains to be achieved to improve our understanding of the initial infection in 356 

the human dermis, where arbo-bunyaviruses are introduced by infected arthropods, the 357 

subsequent spread throughout the host, and at the end, the progression of the disease. 358 

Release of viruses into the host dermis by infected arthropods 359 

Arbo-bunyaviruses are introduced into the mammalian skin through the saliva of infected 360 

arthropods during a blood meal. The bite of arthropods usually triggers local host defenses 361 
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in the skin such as hemostasis and immune responses. Insects and ticks have all developed 362 

similar strategies to counteract these defenses. The saliva of arthropods contains a number 363 

of molecules with angiogenic, immunomodulatory, anti-inflammatory, and anti-hemostatic 364 

abilities [130-133]. In this context, resident immune skin cells, such as macrophages (MPs) 365 

and DCs, are most likely rendered silent [134,135]. As discussed in the following 366 

paragraphs, these cells are considered key players in the progression of infection by many 367 

arbo-bunyaviruses. Their inefficiency to trigger the immune response arguably confers a 368 

definitive advantage to arboviruses for the initial infection and spread throughout the host. 369 

Together, the effects of the arthropod saliva create a propitious, ideal environment in the 370 

site of virus transmission for the establishment of infection [136]. This is particularly well 371 

documented for insect-borne viruses such as DV, WNV, and the vesicular stomatitis virus 372 

(VSV), an arbovirus from the Rhabdoviridae family. Infection by these arboviruses 373 

through mosquito saliva results in an increase in virus transmission, host susceptibility, 374 

viraemia, disease progression, and mortality [136-144]. In the case of arbo-bunyaviruses, 375 

the infection of mice is potentiated by the co-injection of mosquito saliva with RVFV or 376 

Cache Valley virus, an orthobunyavirus [145,146]. Similarly, co-injection with LACV 377 

potentiates infection of white-tailed deer and chipmunks [147]. 378 

The immune defenses of arthropods differ from those of mammals in the sense that they 379 

do not involve antigen-presenting cells and also lack an interferon-based innate immune 380 

response [148-150]. Remarkably, insects make use of RNA interference as the main 381 

immune pathway to control arbovirus infections [151]. Microsymbionts, mostly bacteria 382 

living in symbiosis with their host, have also been shown to play an important role in 383 

arthropod immune defenses, mainly in the saliva, and to a higher extent in the midgut [152-384 

154]. For instance, the bacteria Wolbachia increases host resistance to RNA viruses and 385 

other insect-transmitted pathogens [155-159]. In some cases, viral replication can, 386 

however, be enhanced by the presence of microbial symbionts [160]. Despite the 387 

importance of arthropod-associated microbiota in the general behavior of arthropods, how 388 

it affects the transmission of arbo-bunyaviruses and other arboviruses to mammalian hosts 389 

remains to be explored. 390 

Other physiological aspects of the introduction of arboviral particles into the skin, like the 391 

diameter of syringes used for injection, are often neglected in animal studies. The smallest 392 
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diameter is still much larger than the proboscis of mosquitoes or the hypostome/chelicera 393 

of ticks. Syringes most likely trigger inflammatory responses in animals, and with this 394 

regard, are inappropriate to mimic an arthropod bite. Significant differences in terms of 395 

viraemia have been observed when LACV is injected into deer and chipmunks either by 396 

syringes or through infected-mosquito bites [147]. Many experimental challenges thus 397 

remain for studying arbovirus transmission under conditions identical to those of natural 398 

infection in the host skin. 399 

First-target cells 400 

The mammalian skin is a highly complex organ that consists of the epidermis underlain by 401 

the dermis and subcutaneous fatty tissues (Figure 4). The epidermis and the dermis are 402 

sprinkled with a large variety of organ-like structures such as hair follicles and sweat glands 403 

as well as nerves and blood vessels. Many diverse cell types reside in each layer of the skin 404 

and together these cells coordinate the human defense against invading microbes. For a 405 

comprehensive view of the different innate and adaptive immune cells associated with the 406 

skin, we recommend the excellent review by Heath et al. [161]. 407 

Arbo-bunyaviruses are thought to be released from the arthropod saliva directly into the 408 

dermis layer where the blood meal occurs and blood vessels, capillary beds, and lymphatics 409 

spread. The dermis is essentially composed of elastin and collagen fibers as well as of an 410 

extracellular matrix produced by the subcutaneous fibroblasts. This layer of the skin is 411 

interspersed with many cell types, including MPs, various subpopulations of DCs and T 412 

cells, mast cells, and innate lymphoid cells [161]. These cells are most likely the first to 413 

encounter incoming viruses. However, while many reports support a prominent role for 414 

immune cells in the pathogenesis of arbo-bunyavirus-induced diseases, the identity of the 415 

first-target cells during the initial infection remains largely unknown. 416 

Whilst B-, T-, and natural killer cells appear resistant to CCHFV, human monocyte-derived 417 

MPs have been shown to support productive infection by CCHFV and Dugbe virus 418 

(DUGV), a nairovirus closely related to CCHFV [162,163]. RVFV and rhabdoviral 419 

particles pseudotyped with the glycoproteins of SFTSV have also been seen to infect MPs 420 

[114,164]. Furthermore the role of MPs in RVFV dissemination is supported by a study 421 

involving the use of a virus strain lacking the virulence factor NSs in combination with 422 
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mice deficient in the interferon receptor [61]. Monocyte-derived DCs, which are commonly 423 

used as a model for dermal DCs, are productively infected by nairoviruses, including 424 

DUGV and CCHFV, as well as by phleboviruses like RVFV and UUKV [25,119,162,163]. 425 

In addition, monocyte-derived DCs also support infection by rhabdoviral particles 426 

pseudotyped with the glycoproteins of LACV and SFTSV [114]. Not much is known about 427 

the potential interactions between arbo-bunyaviruses and different skin cell types. 428 

Dermal DCs are believed to be of principal importance for the initial infection and 429 

dissemination of unrelated arboviruses [112]. As sentinels patrolling in the peripheral 430 

tissues, DCs constantly look for foreign bodies, acting at the frontier between innate and 431 

adaptive immune systems. Once an antigen is captured, DCs undergo a complex maturation 432 

process that results in the migration of DCs from the skin to the lymphoid organs where 433 

the presentation of the processed antigens to T cells triggers the adaptive immune response. 434 

A substantial amount of work on DV and WNV supports the model that arboviruses use 435 

dermal DCs as carriers to spread throughout the host [112]. These cells may play a similar 436 

role in the early stages of arbo-bunyavirus infection. Infected DCs release high amounts of 437 

arbo-bunyavirus progenies rapidly after exposure to the viruses, as soon as 6 hours in the 438 

case of RVFV and between 6 and 24 hours in that of CCHFV [25,119,162]. The virus 439 

would continue to spread during the 24 hours that it takes for DCs to reach lymph nodes 440 

[165]. 441 

While an accumulation of evidence supports a role for MPs and DCs in arbo-bunyavirus 442 

infection, it is still not completely clear whether these cells are the first to be targeted and 443 

infected following the delivery of incoming viral particles by arthropods into the host skin. 444 

In other words, if these cells represent an entry door for arbo-bunyaviruses into the 445 

mammalian hosts, or if they are involved in later stages and subsequent rounds of infection. 446 

Our current knowledge is essentially based on in vitro investigations, and the available data 447 

obtained in vivo for RVFV often involves either NSs-defective viruses or vaccine strains, 448 

the propagation of which in mammals is without doubt substantially different from that of 449 

the wild type strain [61,166]. Additionally, data on other skin cell types is insufficient to 450 

rule out their participation, direct or indirect, in the initial infection. Therefore it is not 451 

possible to exclude that arbo-bunyaviruses employ alternative strategies to spread 452 

throughout the host. Arbo-bunyaviruses and other arboviruses may replicate in some skin 453 
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cells before spreading or simply jump into the blood vessels or lymphatics to reach other 454 

organs. 455 

Early virus-host cell interactions: receptors for arbo-bunyaviruses 456 

Independently of the cell type in which the initial infection occurs, viruses need to attach 457 

and enter cells to amplify and propagate within the host. Animal viruses are usually simple 458 

in structure and composition. Their variety is, however, wide in size, structure, tropism, 459 

and mode of replication. This diversity is also manifested at the level of host entry into 460 

target cells. The penetration of viruses into the cytosol relies on complex interactions with 461 

the host cells and involves hundreds of cellular factors and processes. The virus entry 462 

program begins with the attachment of the viral particles to cell surface proteins, 463 

carbohydrates, or lipids. Although some viruses have the ability to penetrate into the 464 

cytosol directly from the plasma membrane, an immense majority of viruses, including 465 

bunyaviruses, are sorted into one of several endocytic pathways (Figure 5). After delivery 466 

into the endosomal lumen, low pH triggers changes in arbo-bunyavirus particles that 467 

ultimately result in the delivery of the virus genome into the cytosol. The receptors, cellular 468 

factors, and pathways used by arbo-bunyaviruses to enter their host cells remain largely 469 

unidentified and poorly characterized. Only a few surface receptors on target cells have 470 

been proposed to initiate the endocytic processes used by arbo-bunyavirus (Table 1). 471 

Heparan sulfate has been involved in RVFV and TOSV attachment to cells [167,168]. 472 

SFTSV has also been shown to use non-muscle myosin heavy chain IIA during early 473 

infection, while CCHFV seems to require cell surface nucleolin to target cells [169,170]. 474 

It remains unknown whether these proteins serve as entry receptors or merely attachment 475 

factors. 476 

Recent work has shown that many arbo-bunyaviruses, including RVFV, make use of the C 477 

type lectin DC-SIGN to target and infect DCs [25,114]. Using the couple UUKV-DC-478 

SIGN, it was possible for the first time to visualize virus-receptor interactions in live cells 479 

and analyze their dynamics [25]. This represents a powerful tool to study general virus-480 

receptor interactions. In addition, DC-SIGN provides an interesting bridge between 481 

arbovirus amplification in insect vectors and initial infection in humans. This C type lectin 482 

is expressed on immature dermal DCs, which are present in the anatomical site of virus 483 

transmission, and is specialized in pathogen capture and antigen presentation [171]. DC-484 
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SIGN binds high mannose or fucose N-glycans in foreign glycoproteins through its C-485 

terminal carbohydrate recognition domain, as those of insect-derived glycoproteins. For 486 

these reasons, interactions between DC-SIGN and insect-borne pathogens are thought to 487 

be the most relevant although several studies have suggested a role for the lectin in 488 

infection by various microbes that are not transmitted by arthropods [112,171]. 489 

That some arbo-bunyaviruses are even rich in high-mannose glycans when produced in 490 

mammalian cells suggests that they do not require production in insects to be recognized 491 

by DC-SIGN. It is unlikely that viral progeny coming from dermal DCs can superinfect 492 

mother-infected DCs after spreading into the host. Whilst the immature DCs express high 493 

levels of DC-SIGN, maturation of DCs leads to downregulation of the lectin. In further 494 

rounds of infection in vivo, it is apparent that arbo-bunyaviruses use other receptors than 495 

DC-SIGN. They can infect a wide spectrum of tissues that do not express this immune 496 

receptor, and progeny virions coming from DCs could use other C-type lectins with high 497 

affinity for mannose residues to target and infect new tissues in hosts. A recent study has 498 

established that rhabdoviral particles pseudotyped with the glycoproteins of SFTSV, but 499 

not with those of RVFV and LACV, can subvert L-SIGN [114]. This C-type lectin is 500 

closely related to DC-SIGN, but expressed on liver sinusoidal endothelial cells. In part, 501 

this interaction may explain the tropism of many arbo-bunyaviruses in the liver. 502 

Viral particle uptake 503 

Virus-receptor interactions are often specific and multivalent. Binding to multiple receptor 504 

molecules clustered within microdomains can enhance avidity of low affinity interactions 505 

[172]. Additional receptor molecules can be recruited to the virus binding site, as observed 506 

for UUKV and DC-SIGN [25]. Cholesterol and other lipids also play an important role in 507 

these mechanisms by promoting the formation of the docking site for specific proteins. 508 

Infection by CCHFV and two orthobunyaviruses, OROV and Akabane virus, is abolished 509 

in cells depleted of cholesterol [173-176]. 510 

In general, virus attachment to the cell surface induces receptor-mediated signaling. For 511 

example, DC-SIGN is able to trigger selective signal transduction pathways, which seem 512 

to depend on the nature and glycosylation pattern of the captured antigens [177,178]. The 513 

host and cell identity from which viruses originate is of particular importance, i.e. 514 
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arthropods vs. mammals, and may selectively influence subsequent events, including those 515 

related to endocytosis. In fact, the receptor-mediated cascade of signaling results in the 516 

generation of membrane curvature important for triggering the internalization of the viral 517 

particles into the endocytic machinery [25,172]. 518 

Sequence motifs in the cytoplasmic tail of receptors are critical to drive the internalization 519 

of cargo and viruses. DC-SIGN and UUKV can serve again as a perfect illustration. The 520 

short cytoplasmic tail of the lectin carries several motifs involved in signaling, endocytic 521 

internalization, and intracellular trafficking [171,177-179]. DC-SIGN critically relies on 522 

two leucines (LL) for the endocytosis of cargo [25,179,180]. In contrast to the lack of 523 

evidence for the role of DC-SIGN in internalization of other viruses, the lectin has clearly 524 

been demonstrated to act as a true entry receptor for UUKV [25,179-181]. UUKV is no 525 

longer able to enter cells expressing the endocytic-defective LL mutant of DC-SIGN 526 

[25,181]. This is the only evidence of a direct role for DC-SIGN, beyond attachment, in 527 

productive virus internalization. The implication of DC-SIGN in UUKV infection is thus 528 

fundamentally different from any other viruses. 529 

By interacting with specific adaptor proteins, endocytic motifs determine in general the 530 

internalization pathways of cargo. The motif LL is a typical docking site for adaptor 531 

proteins required in the formation of clathrin-coated endocytic vesicles [182]. The LL motif 532 

in the DC-SIGN cytoplasmic tail is of particular interest. It is present within the sequence 533 

QXXXLL that is different from any others known to involve a LL motif ([DE]XXXL[LI] 534 

or DXXLL) [182]. However, the internalization processes of DC-SIGN remain debatable; 535 

phagocytosis, lipid raft-mediated endocytosis, and clathrin-mediated endocytosis have 536 

each been proposed to be involved [171,180,183,184]. In cells stably expressing DC-SIGN, 537 

EM pictures do not exclusively show UUKV particles in endocytic clathrin-coated vesicles 538 

(CCVs) [25,26]. In cell types lacking endogenous expression of lectin, the virus is rarely 539 

seen in CCVs and silencing of clathrin does not significantly impact infection [26]. The 540 

marginal effect of clathrin knockdown on UUKV infection could reflect the diversity of 541 

endocytic pathways used by UUKV or differences in the role of clathrin in other processes, 542 

such as receptor recycling. 543 

In contrast to UUKV, a body of data suggests that arbo-bunyaviruses mainly use clathrin-544 

mediated endocytosis to enter cells (Figure 5 and Table 1). Some studies based on the use 545 
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of chemical inhibitors, small interfering RNAs (siRNAs), and dominant-negative (DN) 546 

mutants indicate that clathrin-mediated endocytosis is used by CCHFV and many 547 

orthobunyaviruses, including OROV and LACV [173-176,185,186]. The situation is 548 

unclear regarding RVFV uptake. Clathrin-mediated endocytosis has been implied in the 549 

internalization of genetically modified, non-spreading RVFV, whereas two independent 550 

studies suggest that the vaccine strain MP12 enters cells through macropinocytosis and 551 

caveolin-dependent mechanisms [187-189]. Beyond the different RVFV strains used, the 552 

apparent discrepancy between these reports probably points out a general ability of viruses 553 

to use alternative endocytic pathways in a single cell or distinct tissues. The divergent 554 

endocytic processes by which virus receptors are internalized into the cells as well as the 555 

expression pattern of virus receptors on the cell surface certainly influence the capacity of 556 

arbo-bunyaviruses to use one or more entry pathways to infect cells and tissues. 557 

Virus intracellular trafficking and penetration 558 

After internalization and arrival in the lumen of endosomal vesicles, viruses must find their 559 

way through the endocytic machinery in order to reach the appropriate location for 560 

penetration into the cytosol. The endosomes provide a milieu in which the decreasing pH 561 

provides a cue for virus activation (Figure 5) [190,191]. Inhibitor studies have clearly 562 

shown that arbo-bunyaviruses rely on vacuolar acidification for infection (Table 1) 563 

[26,114,173-176,187,188]. Many are sensitive to very low concentrations of ammonium 564 

chloride, bafilomycin A1, or concanamycin B, which are weak bases and inhibitors of 565 

vacuolar-type H+ ATPases that all neutralize the endosomal pH. In addition to the 566 

endosomal acidification, some arbo-bunyaviruses may require proteolytic cleavage in their 567 

envelope glycoproteins for penetration [114]. 568 

Several lines of evidence support the idea that early endosomes (EEs) represents a 569 

necessary step in the journey of arbo-bunyaviruses into the endocytic machinery (Table 570 

1). Expression of DN and constitutively active mutants against endogenous Rab5, a small 571 

GTPase critical for the trafficking and maturation of EEs, blocks infection by many arbo-572 

bunyaviruses, including UUKV, CCHFV, and LACV [26,175,185,186]. Furthermore, 573 

confocal microscopy shows that UUKV enters Rab5-positive EEs while OROV and 574 

CCHFV transit through EEA1-positive EEs [26,174,175]. 575 
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An accumulation of data indicates that many arbo-bunyaviruses are late-penetrating viruses 576 

(L-PVs), a large group of viruses that rely on late endosomal maturation for productive 577 

infection [192]. Acid-activated viral membrane fusion for RVFV, UUKV, and CCHFV 578 

occurs typically at pH levels below 6.0, which are characteristic of late endosomal vacuoles 579 

[26,186,187,192,193]. Acid-activated penetration after internalization of RVFV and 580 

UUKV takes place within 20-40 min, a timing compatible with that of late endosome (LE) 581 

maturation [26,187]. Microtubules are required for productive infection by CCHFV and 582 

UUKV, suggesting the involvement of LE mobility in virus entry [26,194]. Furthermore, 583 

OROV was seen in endosomal vacuoles positive for Rab7, the most critical small GTPase 584 

for the function of LEs [174,195]. 585 

LE formation and cargo transport to lysosomes is inhibited when Rab7 is perturbed. 586 

However, while some arbo-bunyaviruses can be confidently considered L-PVs, Rab7 does 587 

not seem to be required for their penetration. The expression of a Rab7 DN mutant does 588 

not impair infection by CCHFV [175,186]. Although live-cell imaging and confocal 589 

microscopy clearly demonstrates the presence of UUKV particles in Rab7- or LAMP1-590 

positive endosomes and lysosomes, the Rab7 DN mutant T22N has no significant effect on 591 

UUKV infection [26]. In contrast, the expression of the constitutively active form of Rab7 592 

results in an increase in UUKV infection [26]. Rab7 appears to be also unessential for 593 

infection by LACV, though little information is available on intracellular trafficking for 594 

this virus [185]. There could be many reasons for Rab7 being dispensable, such as the 595 

presence of multiple isoforms of Rab7, the DN mutants’ lack of effect, mislocalization of 596 

the mutant Rabs, etc. An alternative explanation would be that viruses simply escape the 597 

degradative branch of the endocytic machinery earlier, e.g. during sorting from the EE 598 

platform to the nascent multivesicular bodies (MVBs), the first intermediates in LE 599 

maturation (Figure 5). That Rab7 is less present on LEs during the early stages of 600 

maturation may explain why Rab7 mutants do not affect infection [190,191]. This seems 601 

to be the case for CCHFV, which has been recently shown to penetrate cells from MVBs 602 

[175]. Interestingly unrelated L-PVs, such as Lymphocytic choriomeningitis and Lassa 603 

viruses, two arenaviruses, do not rely on Rab5 and Rab7 to reach late endosomal 604 

compartments [196,197]. Therefore, the interpretation of the effects of Rab7 perturbations 605 

is not always entirely straightforward and should be regarded with caution. 606 
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As the final step of the entry process, bunyaviruses make use of membrane fusion to 607 

transfer their genome and accessory proteins into the cytosol [26]. The viral glycoproteins 608 

GN and GC undergo important conformational changes upon acidification [23,187]. The 609 

structural similarities between the RVFV GC protein and class II fusion glycoproteins 610 

probably indicate that fusion mechanisms resemble those determined for other arboviruses 611 

involving class II fusion proteins such as the flavivirus E and alphavirus E1 proteins 612 

[3,198]. However, the details of the fusion mechanisms allowing bunyavirus penetration 613 

remain not well characterized [3,198]. Once the virus is uncoated and the viral core gains 614 

access to the cytosol, the replication begins. The cell and then the host are infected. 615 

Conclusion 616 

Arbo-bunyaviruses and other arboviruses constitute a large group of viruses that share 617 

dependence on arthropod vectors for transmission. In this review, we have summarized 618 

current knowledge of the initial infection by arbo-bunyaviruses in humans and other 619 

mammals, from virus introduction into the skin to entry into the first cells. While arbo-620 

bunyavirus transmission and spreading are complex processes not yet thoroughly 621 

understood, it is already clear that hundreds of cellular factors with a wide range of 622 

functions are involved in the transmission and cell entry program of these viruses. Progress 623 

in this area can be driven by results from siRNA-based high throughput screens that help 624 

to identify host cell proteins and functions critical for infection, such as those recently 625 

published for RVFV and UUKV [27,199]. 626 

In part, progress will also require detailed cell biological analysis of the infection process, 627 

and of the whole pathway in different types of cells and hosts. However, single inhibitors 628 

cannot accurately define a cellular pathway, and perturbants have many side effects or 629 

simply impair different processes in cells. It will be possible to determine specific 630 

endocytic mechanisms only by a combination of well-defined inhibitor profiles, 631 

preferentially through various independent approaches. This will not happen without the 632 

development of quantitative and qualitative assays allowing for the monitoring and analysis 633 

of the very first minutes of infection, i.e. from virus attachment to internalization and 634 

fusion. All the cell factors and mechanisms identified can potentially be used as targets to 635 

block the initial steps of transmission and the subsequent early virus-host cell interactions. 636 

The information gained from studies on arbo-bunyaviruses and other arboviruses may, on 637 
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the other hand, provide valuable information about hard-to-investigate, basic cellular and 638 

molecular mechanisms that control the immune response in hosts as well as various 639 

endocytic processes. 640 

Future perspective 641 

The increasing number of outbreaks underscores the importance of understanding the 642 

cellular mechanisms involved in arbo-bunyavirus transmission and infection. Much further 643 

work is needed in the characterization of particles derived from arthropods in order to 644 

understand the very first stages of transmission to human and other mammalian hosts, and 645 

in order to find a novel means to control bunyaviral diseases. In this respect, tick-derived 646 

viruses remain insufficiently characterized given the central role played by tick vectors in 647 

emerging diseases. One can easily anticipate that the tick cell biology of viruses is going 648 

to be an ever-growing field of inquiry. While it is clear that arbo-bunyaviruses use many 649 

receptors to target and infect a large panel of tissues, only a few receptors have been 650 

documented in humans, and not a single one in the arthropod vectors. The quest to identify 651 

arbo-bunyavirus receptors is the key to broadening our knowledge of viral dissemination 652 

and tissue tropism. 653 

At the molecular level, many aspects of the cell biology of bunyavirus entry await further 654 

investigation. The uptake mechanisms must be clarified, or simply uncovered, for most 655 

bunyaviruses. Beyond entry into EEs, progression of particles into the endosomal network 656 

remains to be further defined. Virus fusion and uncoating are evident areas of possible 657 

investigation for future research and the X-ray structure recently published for the 658 

glycoprotein GC of RVFV is a crucial first step. Ultimately, all of these approaches need to 659 

be ascertained under a relevant physiological context. The complete picture of arbo-660 

bunyavirus transmission, entry, and spread will not be achieved without in vivo approaches. 661 

In this regard, live animal imaging represents the future of studies. Multiphoton 662 

microscopy and other state-of-the-art microscopy techniques will shed new light on very 663 

early interactions between arbo-bunyaviruses and hosts.  664 
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Executive summary 665 

A majority of bunyaviruses belongs to the super group of arboviruses (arthropod-borne 666 

viruses) 667 

 Arbo-bunyaviruses infect a large spectrum of hosts, including plants, invertebrates, 668 

humans, and other vertebrates. 669 

 Arbo-bunyaviruses are mainly transmitted by mosquitoes, flies, and ticks. 670 

 Due to their mode of transmission and the increasing number of outbreaks, arbo-671 

bunyaviruses are considered as emerging agents of diseases. 672 

Arthropod-to-mammal host switch 673 

 Host-switch is a prominent part of the arbo-bunyavirus life cycle. 674 

 The cell biology in mammalian hosts is different from that in arthropod vectors, the 675 

consequence being that arbovirus particles can change some components and the 676 

composition of their lipid and glycan coats during host switch. 677 

 Arbo-bunyaviruses are introduced into the human skin through the saliva of 678 

infected arthropods during a blood meal. 679 

 Arthropod saliva has major effects on arbo-bunyavirus infection. 680 

First-target cells in mammalian hosts 681 

 Arboviruses are believed to target resident dendritic cells in the skin dermis, the 682 

anatomical site of virus transmission, for the initial infection and the later spread 683 

throughout the host. However one cannot exclude that arbo-bunyaviruses use 684 

alternative strategies for dissemination within hosts. 685 

 It is paramount to recapitulate arthropod-to-mammal host switch in experimental 686 

approaches. The initial infection of mammalian cells by arbo-bunyaviruses in the 687 

host skin should not be addressed outside the context of the physiological 688 

conditions of arthropod-to-mammal conditions. 689 

Cell biology of bunyavirus entry 690 

 Only a few receptors have been documented for arbo-bunyaviruses (non-muscle 691 

myosin heavy chain IIA, surface nucleolin, DC-SIGN, and L-SIGN). 692 
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 Arbo-bunyaviruses penetrate host cells by endocytosis and acid-activated 693 

membrane fusion. 694 

 Clathrin-mediated endocytosis appears to be used by a majority of arbo-695 

bunyaviruses to enter cells. However, the uptake mechanisms remain to be 696 

uncovered for most bunyaviruses and clarified for many others. 697 

 While it is clear that several arbo-bunyaviruses present the features of late-698 

penetrating viruses, a group of viruses that share dependence on late endosomal 699 

maturation for productive infection, the details of the intracellular trafficking and 700 

uncoating are still missing for many of them. 701 

Future perspective 702 

 Most of the findings regarding arbo-bunyavirus transmission and infectious entry 703 

need to be ascertained in vivo, under more relevant physiological conditions. Live 704 

animal imaging represents the future in this area of research and should shed new 705 

light on the early interactions between arbo-bunyaviruses and their hosts.  706 
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Figure and table legends 1267 

Figure 1 – The Bunyaviridae family. 1268 

The Bunyaviridae family comprises five genera with more than 350 identified isolates 1269 

worldwide. These viruses are mainly transmitted to vertebrate hosts, including humans, by 1270 

arthropod vectors. 1271 

Abbreviations: ANDV, Andès virus; BUNV, Bunyamwera virus; CCHFV, Crimean Congo 1272 

hemorrhagic fever virus; DUGV, Dugbe virus; HAZV, Hazara virus; HTNV, Hantaan 1273 

virus; INSV, Impatiens necrotic spot virus; LACV, La Crosse virus; NSDV, Nairobi sheep 1274 

disease virus; OROV, Oropouche virus; PTV, Punta Toro virus; PUUV, Puumula virus; 1275 

RVFV, Rift Valley fever virus; SBV, Schmallenberg virus; SFTSV, Severe fever with 1276 

thrombocytopenia virus; TOSV, Toscana virus ; TSWV, Tomato spotted wilt virus; UUKV 1277 

Uukuniemi virus 1278 

Figure 2 – Bunyavirus genome and particles. 1279 

A. Schematic representation of the genome of arthropod-borne bunyaviruses. The arrows 1280 

indicate the open reading frames. B. Schematic representation of a generic bunyavirus 1281 

particle. C. The electron microscopy picture shows the phlebovirus Uukuniemi (kind gift 1282 

of Dr. Radosav Pantelic, Laboratory of Henning Stahlberg, University of Basel, 1283 

Switzerland, 2010). 1284 

Abbreviations: CCHFV, Crimean Congo hemorrhagic fever virus; RVFV, Rift Valley 1285 

fever virus; UUKV Uukuniemi virus 1286 

Figure 3 – Arbo-bunyavirus life cycle and host-switch. 1287 

The life cycle is depicted here for a generic arthropod-borne bunyavirus, which includes 1288 

the transmission cycle between, and within, non-vertebrate and vertebrate host populations, 1289 

and the productive cell cycle in arthropod vectors and mammalian hosts. Arthropod cell-1290 

derived viruses appear in shades of blue and those originating from mammalian cells in 1291 

shades of red. 1292 

Figure 4 – Delivery of arboviral particles into human skin. 1293 

During natural transmission, arboviruses are introduced into the human skin dermis 1294 

through the saliva of infected arthropods. DC and NK stand for dendritic cells and natural 1295 

killer, respectively. 1296 
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Figure 5 – Arbo-bunyaviruses in the endocytic machinery. 1297 

The figure shows an overview of the degradative branch of the endocytic machinery. The 1298 

gray dash lines indicate the location for the penetration of some bunyavirus members 1299 

(LACV, OROV, RVFV, and UUKV). On the left, the scale indicates the time required for 1300 

a cargo to traffic from the plasma membrane to an organelle and the pH inside the vacuoles 1301 

(pH). 1302 

Abbreviations: CCHFV, Crimean Congo hemorrhagic fever virus; EEA1, early endosome 1303 

antigen 1; EL, endolysosome; ER, endoplasmic reticulum; ESCRT, endosomal sorting 1304 

complex required for transport; ILV, intraluminal vesicle; LACV, La Crosse virus; MVB, 1305 

multivesicular body; Lamp1, lysosomal-associated membrane protein 1; LY, lysosome; 1306 

OROV, Oropouche virus; Rab, Ras-related in brain; RE, recycling endosome; RVFV, Rift 1307 

Valley fever virus; TAHV, Tahnya virus; UUKV Uukuniemi virus; * Jamestown, Inkoo, 1308 

California encephalitis, Serra do Navio, Melao, Keystone, Trivittatus, and Snowshoe Hare 1309 

viruses. 1310 

Table 1 – Cell factors and processes important for arbo-bunyavirus infectious entry. 1311 



Table 1 – Cellular factors and processes important for bunyavirus infectious entry 

 Virus 
Receptor 

(s) 

Acid-

activated 

penetration 

Penetration 

(t1/2 min) 

Cellular factors and processes 

Ref 

Involved Not involved 

O
rt

h
o

b
u

n
ya

vi
ru

s 

AKAV  YesWT  
ClathrinWT, c, Dynamin 2WT, CholesterolWT, 

vATPasesWT 

Caveolin-1WT 
[176] 

BUNV  Yesccf    [96] 

GERV DC-SIGNWT     [25] 

LACV DC-SIGN** 

Yesccf 

(pH ~6.0-6.2 

for fusion)ccf 

 
ClathrinWT, Dynamin 2WT, Eps15WT, Rab5WT, 

Serine protease** 

ActinWT, Caveolin-1WT, 

CholesterolWT, L-SIGN**, 

Na+/H+ antiportersWT, Rab7WT 

[94,95,97, 
98,114,185] 

OROV  YesWT  
ClathrinWT, $, CholesterolWT, Rab7WT, c, 

vATPasesWT 
Caveolin-1WT, EEA1WT, c [174] 

TAHV  Yesccf  ClathrinWT, Dynamin 2WT  [94,185] 

Others*    ClathrinWT, Dynamin 2WT  [185] 

N
a

ir
o

vi
ru

s 

CCHFV NucleolinWT 

YesWT, # 

(pH ~5.5-6.0 
for 

penetration)WT 

 

Alix/Aip#, c, AP2WT, CD63WT, c, 

CholesterolWT, #, Dynamin 2#, ClathrinWT, #, 

EEA1 WT, c, ESCRT§, #, MicrotubulesWT, 

PI3K#, Rab5WT, #, vATPasesWT, # 

Caveolin-1WT, LAMP1WT, 

Na+/H+ antiporters#, Rab7WT 

[170, 173, 

175,186, 
194] 

P
h

le
b
o

vi
ru

s 

PTV DC-SIGNWT     [25] 

RVFV 

Heparan 

sulfate***, 

DC-SIGN¶, ** 

Yes***, & 

(pH ~5.7 

for 

penetration)*** 

16-24*** 

Actin***, &, Ca2+ and K2+ channels&, 

Caveolin-1&, Cholesterol&, Clathrin***, 

Dynamin 2***, &, Microtubules&, 

Na+/H+ antiporters&, PI3K&, PKC&, 

vATPases#, ***, & 

Actin&, Cholesterol***, 

Clathrin&, L-SIGN**, Eps15&, 

Na+/H+ antiporters&, PAK-1&, 

PI3K&, Rac-1& 

[25,114, 

167,187, 

188,189] 

SFTSV 

NMMHCIIAWT, 

DC-SIGN**, 

L-SIGN** 

Yes**  
Dynamin 2**, Serine protease**, 

vATPases** 
Cathepsin B and L**, PI3K** 

[114,169] 

 

TOSV 

Heparan 

sulfateWT, DC-

SIGNWT 

    [25,168] 

UUKV DC-SIGNWT 

YesWT 

(pH ~5.4 

for 
penetration)WT 

10-15 

ClathrinWT, @, LAMP1WT, c, MicrotubulesWT, 

PI3KWT, ProteasomeWT, Rab5WT, 
TemperatureWT, VAMP3WT, vATPasesWT 

Rab7WT [25,27] 

The red lettering indicates the cellular factors that have been shown to be both important and dispensable for RVFV entry. 

Abbreviations: AKAV, Akabane virus; BUNV, Bunyamwera virus; CCHFV, Crimean Congo hemorrhagic fever virus; GERV, Germiston virus; LACV, La Crosse virus; 

NMMHCIIA, Non-muscle myosin heavy chain IIA; OROV, Oropouche virus; PTV, Punta Toro virus; RVFV, Rift Valley fever virus; SFTSV, Severe fever with 
thrombocytopenia syndrome virus; TAHV, Tahnya virus; TOSV, Toscana virus; UUKV, Uukuniemi virus. 

Virus model: * Jamestown, Inkoo, California encephalitis, Serra do Navio, Melao, Keystone, Trivittatus, and Snowshoe Hare viruses; ** Rhabdoviral particles pseudotyped with 

the glycoproteins GN and GC; *** Genetically modified, non-spreading RVFV; ¶ RVFV ZH548 strain; & RVFV MP12; # Genetically modified CCHFV to express the red 

fluorescent protein mKate2; WT Wild type or parental virus strain. 

ccf cell-cell fusion assay; § Tsg101, Vps24, and Vps4B; c Confocal microscopy-based analysis of colocalization events; @ Depletion of clathrin has a weak effect on infection 

(30% <); $ Electron and confocal microscopy pictures also show OROV in a clathrin-coated pit and co-localizing with the clathrin heavy chain, respectively. 
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